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A Dynamic Microsimulation Model for Epidemics 

A large evidence base demonstrates that the outcomes of COVID-19 and national and local interventions are 

not distributed equally across different communities. The need to inform policies and mitigation measures 

aimed at reducing the spread of COVID-19 highlights the need to understand the complex links between our 

daily activities and COVID-19 transmission that reflect the characteristics of British society. As a result of a 

partnership between academic and private sector researchers, we introduce a novel data driven modelling 

framework together with a computationally efficient approach to running complex simulation models of this 

type. We demonstrate the power and spatial flexibility of the framework to assess the effects of different 

interventions in a case study where the effects of the first UK national lockdown are estimated for the county 

of Devon. Here we find that an earlier lockdown is estimated to result in a lower peak in COVID-19 cases and 

47% fewer infections overall during the initial COVID-19 outbreak. The framework we outline here will be 

crucial in gaining a greater understanding of the effects of policy interventions in different areas and within 

different populations. 

Keywords: Coronavirus, COVID-19, microsimulation, SEIR, spatial-interaction, dynamics 

 

1. Introduction 

Across the world, governments have introduced non-pharmaceutical interventions (NPI) to 

try and control the spread of COVID-19 through a reduction in the number of contacts 

between susceptible members of the population and those with the disease (Desvars-

Larrive et al., 2020).  Those interventions include social distancing, isolation, wearing face 

masks and lockdowns at national, regional and local scales. In the UK, each policy has been 

underpinned by much speculation surrounding its timeliness, extent and subsequent 

effectiveness. However, what has become clear is that pre-existing systemic health 
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inequalities (Daras et al., 2021, Kontopantelis et al., 2021, McNamara et al., 2020) have 

meant that regardless of NPI, certain communities have been disproportionately impacted 

in terms of COVID-19 cases, hospitalisations and mortality outcomes. There is evidence of 

markedly different impacts on health across various domains, including: geographical 

region (Kontopantelis et al., 2021); level of deprivation (Cabinet Office, 2017, Office for 

National Statistics, 2021); race and ethnicity (Mathur et al., 2020, Race Disparity Unit 

Cabinet Office, 2020). The causes behind these patterns are complex and interlinked (Bibby 

et al., 2020, Zhang et al., 2021). Such factors include economic circumstances whereby 

people in more disadvantaged communities are less able to comply with requirements to 

work from home due to their occupation. Additionally, some communities are less inclined 

to comply with restrictions due to mistrust of authorities (Daras et al., 2021, Harris, 2020, 

Zhang et al., 2021). 

The risk factors leading to COVID-19 cases, hospitalisation, and mortality exist not only at 

the individual level; neighbourhood-level factors and their interactions with individual-

level factors are also responsible for the observed disparities (Daras et al., 2021, KC et al., 

2020). Lack of access to health care, unemployment, occupation type, level of education, 

and housing conditions significantly increase the risk of COVID-19 infection (Bilal et al., 

2021, KC et al., 2020, Shah et al., 2020). The varying levels of vulnerability between people 

and places has been increasingly shown to have important consequences for individual and 

community responses to the pandemic (Daras et al., 2021, Harris, 2020). Given these 

complexities, it is increasingly clear that to understand the effectiveness of government 

policies we require detailed data that reflects the everyday lives of the British population. 
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Since the onset of the pandemic, researchers across a variety of disciplines have come 

together to understand the transmission of COVID-19 at the population level. 

Compartmental models, specifically the Susceptible – Exposed – Infection – Removed 

(SEIR; Rvachev and Longini (1985)) have formed the bedrock of this research. However, 

with the partial exception of a number of models that allow for the effect of population age 

structure (Keeling et al., 2020, van Leeuwen and Sandmann, 2020) or specific behaviour 

changes in response to public health interventions and seasonal change (Dureau et al., 

2013, Ferguson et al., 2006, Kucharski et al., 2020) through stochastic model extensions, 

most of this work has largely failed to embed and replicate the complex space and time 

dynamics that underline the spread of COVID-19 across different populations and 

communities within their models. 

In this paper we outline an enhancement of the traditional SEIR model of infectious disease 

transmission through adoption of a spatial microsimulation modelling framework that 

brings together epidemiological modelling, urban analytics, spatial analysis and data 

integration. Specifically, we combine the power of well-established methods within the 

social and behavioural sciences, namely spatial microsimulation and spatial interaction 

models, within a dynamic SEIR to offer the best approximation of (i) the daily, individual-

level mobilities that characterise many of the interactions which lead to COVID-19 

transmission and (ii) the impact of different NPI based on the complex health, socio-

economic and behavioural attributes of the British population. This framework provides 

the much-needed ability to assess the effects of past interventions and simulate the effects 

of future policy decisions on different population groups at a variety of spatial scales. 

Jo
urn

al 
Pre-

pro
of



4 
 

The modelling framework proposed here is based on synthetic georeferenced population 

which has been enriched with additional socio-economic, demographic, activity and health 

attributes required to understand individuals’ typical mobility patterns and likelihood of 

being severely impacted by the disease.   In each simulated day, the common daily 

behaviours of the synthetic individuals – currently shopping, schooling and working – are 

simulated and then, if they have the disease, the individuals impart a hazard to the 

locations that they visit. Disease-free individuals who also visit these locations receive 

some exposure which, when combined with their individual vulnerability, may lead to them 

contracting the disease themselves. The model runs for a user-defined number of simulated 

days and, on completion, outputs aggregate disease statistics. 

The remainder of this paper is organised as follows. Section 2 describes the risk modelling 

framework including how hazards and exposures are estimated and integrated within a 

compartmental epidemiological risk model. This section also contains details on the 

generation of a synthetic population (Section 2.2), how health, socio-demographics, and 

activity information are incorporated into that population (Section 2.2.1) and how 

individuals are assigned to appropriate locations (e.g. school, home, work) for their 

activities (Section 2.3). In Section 3 the result of a case study in Devon is presented, 

showing the effects of the lockdown that started on 23rd March 2020 compared to those 

predicted if the lockdown had started a week earlier. Finally, Section 4 provides a 

concluding discussion and ideas for future developments and applications. 

2. Methods and Materials 

2.1 Disease Modelling 
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Compartmental models have been used widely in infectious disease epidemiology with 

many based on the Susceptible – Infection – Removed (SIR) model introduced by Kermack 

and McKendrick (1927) or the Susceptible – Exposed – Infection – Removed (SEIR) model 

introduced by Rvachev and Longini (1985). They have been used extensively for modelling 

COVID-19 with examples including Arcede et al. (2020), Dureau et al. (2013), Keeling et al. 

(2020), Kucharski et al. (2020), van Leeuwen and Sandmann (2020).   

As an important characteristic of COVID-19 is the possibility of transmission when 

individuals are unknowingly infectious, i.e. in the pre-symptomatic and asymptomatic 

phases (Arcede et al., 2020). The SEIR model used here has a further breakdown of the 

infectious and removed components (Fig. 1). The additional compartments provide 

enhanced additional resolution in the disease status of individuals that is important to 

determine individual behaviour and transmission probabilities (He et al., 2020). 

[Figure 1 about here.] 

Individuals within the model may progress between compartments based on a 

probabilistic approach to determine the progression from one compartment (phase of 

infection) to the next (See Section 2.1.3).  SEIR models have been combined with high 

resolution social interaction networks to explore COVID-19 transmission pathways at local 

scales (Aleta et al., 2020, Firth et al., 2020) and metapopulation models have been used to 

capture broad scale COVID transmission dynamics with an SEIR model used within each 

electoral ward (Danon et al., 2020). Here, a dynamic microsimulation modelling framework 

is used to calculate those the probabilities of transmission are calculated for each 

individual within a given population, based on their movements across time and space 
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according to their demographic and socioeconomic characteristics, and hence their 

exposure to the disease according to the different locations they regularly visit, i.e. shops, 

schools and workplaces. 

The dynamic simulation framework consists of three, interlinked, components: 

1. Stage 1, Hazard allocation - individuals with the disease impart hazard to the 

locations they visit. See Section 2.1.1 

2. Stage 2, Risk estimation - as individuals without the disease visit different locations 

with increased hazards their risk of contracting the disease will increase. See 

Section 2.1.2 

3. Stage 3, Disease status - individuals that are exposed to the disease will either 

contract the disease whilst those with the disease may recover. Each day, the 

disease status (Susceptible, Exposed, Infectious, or Removed) is updated 

probabilistically. See Section 2.1.3 

This daily update is illustrated in Figure 2. Before simulating daily dynamics, the model 

estimates an initial disease status for each individual. This initialization is only performed 

once and, in effect, seeds the disease into the population. After this initial step, in each 

iteration of the model synthetic individuals spend time at some locations; current locations 

are their homes, shops, schools, and workplaces. If an individual is infected then they 

impart some of this infection risk on to the location that will then form the basis of the risk 

of disease for others at those locations. 

[Figure 2 about here.] 
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2.1.1  Hazard Allocation 

In each iteration the synthetic individuals spend time in four possible locations; these are 

currently homes, shops, schools, and workplaces. If an individual is infected then they 

impart some of this infection risk on to the location, denoted location hazard, 𝐻. The overall 

hazard, 𝐻, associated with a location, 𝑙 is calculated by summing the individual hazards, ℎ, 

imparted by each agent/individual, 𝑎, from a total population of 𝑁 agents, as they visit 

location, 𝑙: 

𝐻𝑙 = ∑ ℎ𝑎,𝑙
𝑁
𝑎=0       (1) 

If an individual, 𝑎, does not visit location 𝑙, or if they are not infected, then ℎ𝑎,𝑙 = 0. If the 

individual is infected, then the individual hazard is proportional to the amount of time per 

day that the individual spends doing that activity, 𝑡, and the probability that the individual 

will visit that particular location 𝑙. Individuals have a probability of visiting a number of 

different school, work, and retail locations, so the time spent doing a particular activity is 

distributed among the possible locations that they might visit – denoted by 𝑝: 

ℎ𝑎,𝑙 = {
0 if 𝑎 is not infected
𝑡 ⋅ 𝑝 if 𝑎 is infected & symptomatic
𝑡 ⋅ 𝑝 ⋅ 𝜇 if 𝑎 is infected & asymptomatic

   (2) 

Symptomatic individuals impart ‘full’ hazard on a location, while asymptomatic individuals 

will impart a reduced amount of hazard due to reduced transmission rates (Koh et al., 

2020, Madewell et al., 2020, Qiu et al., 2021). We can scale the transmission asymptomatic 

individuals by using the 𝜇 parameter. If an infected, symptomatic individual spends 18 
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hours per day at home and 6 hours per day shopping in two possible shops, each with a 

50% probability of being visited, then the individual hazard assigned to those locations 

from that individual are: 

ℎ𝑠ℎ𝑜𝑝1 = ℎ𝑠ℎ𝑜𝑝2 =   0.25
proportion of time spent shopping

∗  0.5
probability of visiting the shop

 =          0.125 

and 

ℎℎ𝑜𝑚𝑒 =   0.75
proportion of time spent at home

∗  1.0
probability of visiting the single home location

 =          0.75 

The derivation of time spent performing an activity (t) and the possible locations of that 

activity (p) are outlined in Sections 2.2 and 2.3 respectively. 

 

2.1.2 Exposure and Risk Estimation 

In the second stage of each iteration, individuals may receive some exposure to the disease 

based on the locations they visit. The exposure, 𝜖, that an individual, 𝑎, receives per day, is 

the summation of the hazard, 𝐻, of all the locations that they visit, 𝐿, proportioned by the 

amount of time they spend there, 𝑡, and the proportion of visits to that particular location 

that they make, 𝑝: 

𝜖𝑎 = ∑ 𝐻𝑙
⏞

total hazard
at location 𝑙

𝐿
𝑙=0 𝑡𝑙

⏟

proportion of
time spent at 𝑙

𝑝𝑙⏞

probability of 
visiting 𝑙

    (3) 
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Hence if an individual spends 24 hours per day in a location that has a hazard score of 1.0, 

then their exposure will be 1.0. 

An individual’s exposure is then combined with their vulnerability (𝑉) to give the risk 

(probability) of infection on that day:  

𝑟𝑎 = 1.0 − 𝑒−(𝑉𝑎∗𝜖𝑎)𝛥𝑡,    (4) 

where 𝛥𝑡 = 1 day and, for the simulations reported here, 𝑉 is set to 1 for all individuals. In 

future work this mechanism can be used to describe which individuals are more likely to be 

infected. 

 

2.1.3 Disease Status 

As disease-free individuals are exposed to the disease through visiting locations with 

increased hazards. For any given day they will contract the disease with probability 𝑝𝑎 = 𝑟𝑎 

from Equation (4) where a represents the effects of personal characteristics for each 

individual that determine their behaviour and where they spend their time - the key 

components of calculating their individual risk of contracting the disease. The Bernoulli 

distribution is used to assign each individual either a zero (doesn’t get exposed) or a one 

(does get exposed) based on the principle of a coin-flip with the weight of the coin (i.e. the 

chance of being exposed) being determined by the probability 𝑝𝑎.  The higher the 

probability, 𝑝𝑎, the more likely the random number drawn from the Bernoulli distribution 

will be a one, and the more likely they are to transition from susceptible (S) to exposed (E).  

This process is repeated for every individual in the population at each (daily) time step. 
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When an individual is exposed, they are assigned an exposed duration transition time and a 

pre-symptomatic duration and a symptomatic/asymptomatic duration. Following 

approaches commonly used in the literature (see for example, Li et al. (2020), Linton et al. 

(2020), Wei et al. (2020)). The first two of these are realisations of Weibull distributions 

(i.e. non-negative, flexible and allow for long-tails / extended durations) and the latter from 

a log-normal distribution (non-negative and right-skewed). Details of parameters used for 

the different stages, together with references of their sources, can be found in 

Supplementary Information. 

Once in the Exposed (E) state an individual will next move into the Infectious (I) state. This 

can mean moving into the asymptomatic or the pre-symptomatic and then symptomatic 

stage. This will be influenced by an individual’s age and BMI, with older and overweight 

individuals less likely to be asymptomatically infected (Table 1) according to: 

(𝐄 → 𝐈)𝑎 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃𝐈,𝑎)     (5) 

where 𝜃𝐈,𝑎 is determined by the symptomatic probabilities outlined in Table 1. 

Lastly, individuals will move from the Infectious (I) state to the Removed (R) state. All 

asymptomatically infected individuals will recover. Symptomatically infected individuals 

will either recover or die based upon their age and BMI (Table 1). Older and more 

overweight individuals are less likely to recover (Table 1). This transition is described by 

the following: 

(𝐈 → 𝐑)𝑎 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛾𝐑,𝑎)     (6) 

where 𝛾𝐑,𝑎 is determined by the mortality probabilities outlined in Table 1. 
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[Table 1 about here.] 

2.2 Generating a Synthetic Population 

The underlying population used in the dynamic simulation model comes from a spatial 

microsimulation model, SPENSER (Synthetic Population Estimation and Scenario 

Projection Model), developed to provide timely georeferenced population forecasts at a 

high resolution (individual and household level) for scenario projections (Lomax and 

Smith, 2017, Smith and Russell, 2018). SPENSER uses Iterative Proportional Fitting (IPF) 

techniques (Lovelace et al., 2015) to reweight microdata and area level counts from the 

2011 Census of Population for England and Wales to create a micro-level synthetic dataset 

for the entire population. Spatial microsimulation has been widely employed in support of 

financial and economic policy analysis across Europe and North America (Tanton, 2018). 

Over the last two decades, spatial microsimulation techniques have been used increasingly 

to examine health and health inequalities (Morrissey et al., 2015). 

The SPENSER model comprises four steps: (1) estimate the individual population from 

2011 Census Data; (2) estimate the household population from 2011 Census data; (3) 

simulate the baseline population and households forward to the jump off year 2020, 

needed for input to the dynamic model; and (4) assign individuals to households to provide 

consistency between files.  Synthetic individuals are placed in households and are 

attributed demographic (age and sex for each individual), socioeconomic (based on the 

socioeconomic status of the household’s reference person) and housing condition variables 

according to the individual and household estimates from the 2011 Census. The individual 

and household characteristics of relevance to this work can be seen in Table 2, along with 
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additional health and time-use variables that are included through the use of Propensity 

Score Matching (discussed below). 

[Table 2 about here.] 

In the output from SPENSER, each individual is assigned to a Middle Layer Super Output 

Area (MSOA) while in the household output, individual households are assigned to a Lower 

Super Output Area (LSOA). This is due to differences in the constraint tables used to 

construct the synthetic population, where household constraints variables are available 

with higher levels of disaggregation for smaller areas than population constraint variables. 

As individuals are assigned to a household, combining the two files means that information 

for individuals can ultimately be derived at LSOA scale. MSOA is a census geography in 

which each area represents a mean population in the order of 7,200 individuals, and LSOA 

is a finer geography in the order of 1,500 individuals. 

2.2.1 Enriching the Synthetic Population 

Following work by Morrissey et al. (2015), propensity score matching (PSM) using a kernel 

density algorithm was used to allow each individual simulated by the SPENSER model to be 

matched to an individual in two external datasets based on the similarity of their 

demographic, socioeconomic and spatial characteristics. Using a kernel density algorithm, 

PSM was used to enrich the baseline SPENSER dataset to include data from the United 

Kingdom Time Use Survey, 2014/2015 (UKTUS) and the Health Survey of England, 2019 

(HSE). UKTUS is a large-scale household survey that provides data on how people aged 

eight years and over in the UK spend their time. The survey instrument is a time diary 

instrument in which respondents record their daily activities over two weeks. The UKTUS 
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provides the richest source data on how people spend their time, their location throughout 

the day, and who they spend their time with. The UKTUS also has detailed employment 

information as part of its core set of questions including information on employment 

status, and industrial sector and occupation category for those in employment or 

previously in employment (i.e. they are now retired). Including employment data and the 

occupation and industrial sector in which individuals are employed in is important as it 

allows the identification of key workers in the dataset. The HSE is an annual survey that 

provides health and care information on adults aged 16 and over and children aged 0 to 15. 

The HSE survey is used to monitor the rate of obesity and to estimate the proportion of 

people in England who have certain health conditions and the prevalence of risk factors 

and health related behaviours, such as smoking and drinking alcohol. The additional 

variables matched to the outputs from SPENSER can be seen in Table 2. Following the 

approach used in Morrissey et al. (2015) validation of the matching process was performed 

to assess whether the resulting enriched dataset could be considered unbiased conditional 

on the observed characteristics (the conditional independence assumption). Frequencies 

and distributions of both matching variables (used in the PSM) and non-matching variables 

were compared.  One would expect the matching variable to show good agreement across 

the population as this variable was used in the PSM process. However, it is also important 

to understand if the distribution for key variables of subsequent interest not included in 

the PSM process are captured. Table 3 shows an example of this evaluation: the 

distributions of the National Statistics Socio-economic Classification (NS-SEC), one of the 

matching variables in the PSM, and health status, a non-matching variable. The proportions 

in each category in the enriched SPENSER dataset are compared to corresponding Office of 
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National Statistics data and HSE for Devon (Census, 2011) and both the matching and non-

matching variables show good agreement. Figure 3 presents a snapshot of the augmented 

SPENSER data, empirically demonstrating a number of key variables for the MSOAs in the 

five Local Authority Districts that comprise the case study area. 

[Table 3 about here.] 

[Figure 3 about here.] 

2.3. Estimating Interaction with Locations of Disease Transmission 

Currently three activities, other than spending time at home, are simulated in the model: 

working, attending school and shopping. Having estimated the amount of time that 

individuals spend doing these activities (Section 2.2), this section outlines a general 

method for estimating the probabilities that individuals will visit particular sites of disease 

transmission. For example, given that an individual might spend an hour per day shopping, 

which shops are they most likely to visit? 

2.3.1. Supermarket and School Probabilities 

The following provides an illustrative example based on trips to supermarkets and schools, 

but the principle is the same for sending individuals to any point destinations including 

those not explicitly considered currently such as pubs and restaurants. Workplaces are an 

exception, as discussed in Section 2.3.2. 

The probabilities of individuals visiting specific locations are calculated using spatial 

interaction models (SIMs; O’Kelly, 2009).  SIMS estimate the aggregate flows of a 

population from origin zones (neighbourhoods where the synthetic populations live) to 
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destination locations. SIMs are analogous to a Newtonian model of gravity where the 

strength of interaction (in our case the flows of people or the money they spend) is 

proportional to the mass of the origin and destination locations (represented by the size of 

the residential population or the attractiveness of the destination) and inversely 

proportional to the cost of this interaction (frequently represented by travel distance or 

time). Where information about aspects of the system is known such as the total number of 

residents at an origin or pupils on a school roll, constraints can be applied such that 

estimated interactions correspond to this known information. Where data on aspects of the 

interaction are available such as known flows or travel times, parameters of the model can 

be calibrated to improve the estimates produced. The locations of schools (both primary 

and secondary) and shops have been established from Department for Education 

(https://get-information-schools.service.gov.uk/) and the Geolytix retail point open data 

(https://www.geolytix.co.uk/#!geodata), respectively. The ‘attractiveness’ of each location 

is estimated using the school capacity and the approximate retail floorspace (augmented 

with retail turnover) respectively. 

[Figure 4 about here.] 

A cost matrix is used to compute flows between origins and destinations (i.e. trip 

probabilities) based on that used in the QUANT project (Batty and Milton, 2021). QUANT is 

a spatial analysis system which calculates shortest paths between every pair of zones in the 

model, using a network containing all roads in England, Scotland and Wales. As the model 

contains 8,436 MSOA and Intermediate Zones, this equates to 71 million shortest paths on 

an 8 million node road network; it is computationally intensive. Hence, the pre-built 
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QUANT costs matrix is used to calculate costs between 8,436 model zones and 14,227 retail 

point locations. This is achieved by taking the origin zone cost to the destination zone 

nearest to the retail point and then adding an additional term reflecting straight line 

distance from the destination zone to retail point term. These values are available in the 

files generated by the software. This process is repeated for the primary and secondary 

schools. 

Having assembled the data for the origin, destination and costs of travel between zones, a 

spatial interaction model is used to calculate trip probabilities. Details of these models can 

be found in the Supplementary Materials (Section 7). Figure 5 shows the trip probabilities 

for South West England region using flow lines. 

[Figure 5 about here.] 

 

2.3.2. Workplace Probabilities 

Workplace flows would ideally be estimated through a spatial interaction model similar to 

that employed in the estimation of flows to schools and shops. However, the problem with 

journey to work is significantly more difficult because: (i) there are vastly more workplaces 

than shops or schools; (ii) there is no definitive list of workplace locations; (iii) even if 

workplace locations are known, there is no clear link between a synthetic individual’s 

employment category and equivalent workplace categories. 

To address this issue, we initially adopt a stylized approach constructing ’virtual 

workplaces’ which rely on the 2011 UK Census commuting origin-destination tables at the 
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MSOA level for individuals with a fixed workplace. The UKTUS data includes a Standard 

Industry Classification (SIC) code for everyone in the dataset. Matching data from the 

UKTUS to SPENSER baseline data via the PSM process and the UKTUS we were able to 

assign to each of our synthetic resident workers an employer industry among the 21 

divisions from the Standard Industry Classification (SIC) 2007. We assume that all workers 

have an equal ex-ante probability to commute to all destinations independently from the 

SIC to which they belong. We build the set of possible destinations by multiplying the 

number of MSOAs in the study area, 𝑀 = 107, to that of the SIC divisions, 𝑆 = 21, obtaining 

2,247 options. We then populate these virtual workplaces with synthetic workers based on 

their reference SIC and their Census relative probability to commute from 𝑀𝑖  to any 𝑀𝑗 , 

with 𝑗 = 1 … 𝑖 … 𝐽, thus including the MSOA in which the worker resides. 

3. Case Study: UK Lockdown, March 2020 

The first confirmed case of the novel coronavirus in the UK was documented on 21st 

January, 2020. This was followed by the first confirmed COVID death in the UK on 5th 

March. On 16th March the Prime Minister encouraged social distancing, telling people in the 

UK that they should stop all non-essential contact. Although they could remain open, 

people were asked not to visit pubs, clubs and theatres. Workers were asked to work from 

home if they could and households were asked to isolate for two weeks if any member had 

symptoms. On the day of the announcement of these measures the death toll of people in 

the UK with COVID-19 listed as the cause of death reached 55. One week later, on 23rd 

March, 2020, the Prime Minister announced a UK wide lockdown in which he ordered 
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people to only leave the house to shop for basic necessities “as infrequently as possible” 

and encouraged them to perform no more than one form of exercise a day. 

In the following, we provide a case study on the potential reduction in cases and 

subsequently deaths that implementation of the lockdown one week earlier may have had 

in Devon County, England. Devon is a county in the Southwest of England that extends from 

the Bristol Channel in the north to the English Channel in the south and is bounded by 

Cornwall to the west, Somerset to the north-east and Dorset to the east. Devon is a sparsely 

populated, predominantly rural county with a total population of about 700,000. 

3.1 Simulating the lockdown 

The simulation of cases during the first lockdown is based on the temporal distribution of 

cases recorded by Public Health England (PHE; coronavirus.data.gov.uk). During this 

period, the Royal Devon & Exeter NHS Foundation Trust and Northern Devon Healthcare 

Trust estimate that the prevalence of COVID-19 was 2% (personal communication). This 

equates to ca. 14,000 individuals compared with 790 cases recorded by PHE for the Unitary 

Authority of Devon over the first 70 days, due to limited testing at the beginning of the 

outbreak. We smoothed the PHE cases using a negative binomial generalised additive 

model, 𝑠(𝑐𝑎𝑠𝑒𝑠𝑡), and applied a multiplying factor to give the expected number of cases on 

day 𝑡 as 𝑒𝑐𝑡 = (
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛∗𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑠(𝑐𝑎𝑠𝑒𝑠𝑡)
). 

The model was ‘seeded’ by constraining the number of infections in the first 10 days to be 

equal to 𝑒𝑐𝑡  after which the number of new daily infections are generated by the model, 

unrestricted, for a further 60 days. In order to impose lockdown on the simulated 
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population, the amount of time individuals spent outside their home was scaled according 

to data from the Google Community Mobility Reports. As Google Community Mobility 

Reports are available at a regional scale, we used data specific to Devon. These data provide 

aggregated estimates for the proportion of time, on average, a population spends in six 

types of locations relative to a baseline of the median value for the corresponding day of 

the week, during the 5-week period 3 Jan–6 Feb, 2020. The six locations are: retail & 

recreation, grocery & pharmacy, parks, transit stations, workplaces and residential. It is 

assumed that the residential component refers to individuals spending time in their own 

homes and therefore an individual’s baseline is equivalent to the estimated amount of time 

individuals spend at home from the UKTUS (as discussed in Section 2.2). 

The values from the Google Community Mobility data were smoothed for time spent in 

residential locations using a 14-day moving average (𝑔𝑡). Using this in conjunction with the 

average proportion of time spent at home (𝑝ℎ‾ ) and outside the home (𝑝𝑜‾ ) from the 

individuals in the population, we created time-series of daily lockdown multipliers (𝑙𝑡, 

Figure 6).  As can be seen from Figure 6, the values for proportion of time outside the home 

from March to June 2020 are all less than 1. For any given day, the amount of time that any 

individual spends at a location outside the home is reduced in proportion to the lockdown 

multiplier. Time no longer spent on activities outside the home will be added on to time 

spent at home for each individual. The only condition under which the lockdown multiplier 

does not apply is if an individual is in the symptomatic disease status. Here we assume they 

reduce their activities outside the home by 90% to reflect self-isolation behaviour. 

Lockdown restrictions are applied universally across the population so that, for example, 

there is no differentiation for enhanced mobility of key workers or to allow for variations 
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between business sectors (Batty and Milton, 2021), which would be a possible avenue for 

future refinement of the model. 

𝑙𝑡 =
1−(𝑔𝑡∗𝑝ℎ‾ )

𝑝𝑜‾
     [7] 

[Figure 6 about here.] 

 

3.2  Results: Lockdown restrictions imposed one week earlier 

Other countries went into lockdown earlier than the UK and here the effects of 

implementation of a UK-wide lockdown one week earlier than it occurred are simulated. To 

explore the effect of official lockdown occurring earlier, the time-series of lockdown 

multipliers (Figure 6) is shifted to be one week earlier. For the purpose of comparing 

scenarios the lockdown scenario as it happened is referred to as the ‘baseline’ scenario, 

while the scenario in which lockdown is imposed one week earlier will be called the 

‘experimental’ scenario. 

The model simulation in the baseline scenario produced a good fit to the known daily cases 

of COVID-19 according to PHE data. The total infection count in Devon county at the end of 

the 70 day simulation is summarised by age group in Table 4.  As expected, the model 

suggests that an earlier lockdown would have significantly reduced the spread of the 

disease. For the baseline scenario daily infections peaks at 763 (266-1047, 95% CI) people 

per day, while the experimental (i.e. lockdown one week earlier) scenario shows a peak of 

556 (137-718, 95% CI) people per day (Figure 7). 
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Being able to explore heterogeneity in the transmission of the disease in different groups 

within the population and over different spatial aggregations and periods of time is one of 

the key features of the microsimulation approach. The outputs of the model are at the 

individual level and it is straightforward to aggregate the results from the simulations to 

any specified groupings. As an example, Table 4 shows the results by age groups and Figure 

7 the number of cases over time.  Another feature of the model is being able to extract 

information for individuals within the population according to their disease status at any 

point in time and this information can be cross-tabulated with other variables to assess 

heterogeneity in disease status across different groups (over time). As an example, Figure 8 

shows the number of people with different disease status by age group, together with the 

reduction in cases associated with lockdown being a week earlier. This shows a clear 

difference between age groups with a higher proportion of asymptomatic cases in younger 

age groups. 

[Table 4 about here.] 

[Figure 7 about here.] 

The model is spatially explicit, allowing us to explore the geographical distribution of 

COVID-19 infections in our scenarios. Figure 9 shows that the baseline scenario leads to 

some distinct hot-spots located around more densely populated MSOAs, such as those in 

Exeter, which is one of the largest cities in Devon county. In the baseline scenario as much 

as 6% of the population of an MSOA becomes infected. In the experimental scenario, we see 

a similar spatial distribution as that seen in the baseline scenario, with hot-spots located 
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around larger cities with denser populations. However, the maximum infection rate is 

reduced to under 4% in the experimental scenario. 

[Figure 8 about here.] 

[Figure 9 about here.] 

 

4. Discussion and Conclusions  

This paper presents a novel, data-driven modelling framework that reflects the 

complexities of the British population to model the transmission of COVID-19 within 

communities and to assess the effect of policy interventions. The framework brings 

together a wide variety of data driven approaches, including epidemiological disease 

modelling, urban analytics and spatial analysis, as well academic and private sector 

researchers to develop a computationally efficient framework for its implementation. This 

enables questions related to the geographical transmission, diffusion, acceleration and the 

regulation in the incidence of cases to be traced through physical interactions between the 

many components that determine the way entire populations move and interact with one 

another in their daily lives. The power and spatial flexibility of the framework to assess the 

effects of different interventions is demonstrated within the case study where the effects of 

the first UK national lockdown are estimated for the county of Devon. Here we find that an 

earlier lockdown is estimated to result in a lower peak in daily infections and 47% fewer 

infections overall. 
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As outlined in this paper, the framework is based on a spatial microsimulation model, 

SPENSER, that reproduces data on household and its constituent population across the 

whole of Great Britain. The data produced by the spatial microsimulation model replicates 

the structure and behaviour of the real population in terms of demographic, socioeconomic 

and health characteristics, along with detailed time use data. Spatial Interaction models 

‘mobilise’ this data according to the profile of each individual via a series of spatial 

allocations for each individual into a series of real-world physical locations in which the 

transmission of coronavirus could take place. Data from a variety of third-party sources are 

introduced to allow calibration of the models to reproduce existing patterns of movement 

and spatial interaction. In the case study demonstration for Devon, shops, schools and 

hospitals are included as destination locations.  These models are being extended to 

embrace the key activity of the journey to work which is an essential component of the 

balance between working from home and place of work.   

The model is calibrated against a variety of data sources including public health records, 

mobility data, measures of retail activity, employment and educational participation, and 

the socio-demographic composition of small areas. The benefits to wider exploitation and 

sharing of such sources has been widely noted (von Borzyskowski et al., 2021, Science 

Academies of the Group of Seven, 2021).  With such resources at our disposal, the 

development of dynamic microsimulation models could provide a step change in the ability 

of national governments to prepare and respond to the threat of future pandemics. 

The flexibility of the modelling framework presented here allows the parameters and 

distributions within the individual components to be updated to reflect updated scientific 
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understanding and factors such as increased levels of transmission associated with 

multiple variants. It offers a multitude of opportunities for future scenario development, 

including exploring the effects of alternative lockdown scenarios both at an aggregate level, 

but also across different sub-populations, and the ramifications of the vaccination roll-out. 

In the case of the former, it will be possible to consider variations in the timing of 

movements between different mitigation/adaptation strategies on the number and 

distribution of cases, and the capacity of local health services to meet the associated need. 

More refined options such as the restriction of specific types of employment type or 

activity, e.g. schools, restaurants or retail outlets, or the variation of controls across more 

disaggregate geographies than local authority areas can also be considered. For the latter, 

scenarios could be designed that explore the nature of long-term equilibrium dynamics, e.g. 

in a progression towards herd immunity or seasonal cycles of infection, with the model 

creating projections of future infections, by local area, for example, in relation to efficacy, 

uptake, compliance, and availability of the vaccines across social and demographic groups. 

The dynamic simulation model was developed using a combination of R and Python. After 

the initial development, it was refactored using OpenCL, a framework for parallel 

programming. OpenCL allows the simulation to be executed on a CPU or GPU, depending on 

the available hardware, and leads to a significant speedup due to multi-threaded execution. 

The OpenCL implementation is able to run the simulation for 100 timesteps for the whole 

population of Devon in around a second, which is in the order of 10,000 times faster than 

the original implementation. This improved computational speed is crucial if models such 

as this are going to be used by policy-makers within real decision-making environments. In 

addition, an interactive Graphical User Interface (GUI) was built (see Figure 10). The GUI 
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allows the user to explore scenarios while they are executing by interactively starting, 

stopping, stepping and resetting the model. The GUI also allows the values of model 

parameters to be modified and the model to be re-run with updated parameter values. This 

allows rapid exploration of the model output and how it changes with different parameter 

values. 

[Figure 10 about here.] 

The importance of reflecting the real-life behaviours of individuals given their health, 

demographic and socioeconomic circumstances is reflected in the large evidence base that 

demonstrates that the outcomes of COVID-19 are not distributed equally across sub-

populations and space. This is linked to a variety of factors including occupational profile, 

housing circumstances and transportation options.  To date, COVID-19 transmission 

models have failed to capture the necessary data to capture the inequality in outcomes 

across different sub-groups. This paper extends the growing number of COVID-19 

transmission models by developing a dynamic SEIR model underpinned by a ‘digital twin’ 

British population. The digital twin underpinning the dynamic SEIR model represents the 

complex health, socio-economic and behavioural attributes, as well as mobility patterns 

required to understand the transmission of COVID-19 within the community and the 

impact of different interventions. Importantly, the synthetic modelling approach is 

reproducible in any country for which small area demographic counts are available, along 

with nationally representative health and time use data. 
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Table 1: The symptomatic and mortality rates of COVID-19 infections based on age and 
BMI (Brazeau et al., 2020, Popkin et al., 2020, Davies et al., 2020). The base symptomatic 
and mortality rates are taken from Davies et al. (2020) and Brazeau et al. (2020) 
respectively. We multiply the symptomatic rate by 1.46 for overweight individuals (BMI _ 
25) and multiply the mortality rate by 1.48 for obese individuals (BMI _ 30) based on the 
findings by Popkin et al. (2020). 
 

 

Age Group 
(Years) 

Probability of 
Symptomatic 

Infection 

Probability of 
Symptomatic 

Infection if 
BMI _ 25 

Probability of 
Mortality if 

Infected 
 

Probability of 
Mortality if 

Infected and 
BMI _ 30 

0-4 0.21 0.21 0.0000 0.0000 
5-9 0.21 0.21 0.0001 0.0001 

10-14 0.21 0.21 0.0001 0.0001 
15-19 0.21 0.21 0.0002 0.0002 
20-24 0.45 0.66 0.0003 0.0004 
25-29 0.45 0.66 0.0004 0.0006 
30-34 0.45 0.66 0.0006 0.0009 
35-39 0.45 0.66 0.0010 0.0015 
40-44 0.45 0.66 0.0010 0.0024 
45-49 0.45 0.66 0.0024 0.0036 
50-54 0.45 0.66 0.0038 0.0056 
55-59 0.45 0.66 0.0060 0.0089 
60-64 0.45 0.66 0.0094 0.0139 
65-69 0.45 0.66 0.0147 0.0218 
70-74 0.69 0.96 0.0231 0.0342 
75-79 0.69 0.96 0.0361 0.0534 
80-84 0.69 0.96 0.0566 0.0838 
85-89 0.69 0.96 0.0886 0.1311 
90+ 0.69 0.96 0.1737 0.2571 
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Table 2: Attributes for the synthetic population from SPENSER and propensity score 
matching 

 

Variable SPENSER Time 
Use 

Survey 

Health 
Survey 

of England 

Individual    

Sex X X X 

Age X  X 

Ethnicity X X X 

National Statistics Socio-economic Status 

(NS-SEC) of household reference person 

X X X 

Number in household X   

Time use data 

(proportion of time doing different activities) 

 X  

(CVD, high blood pressure, diabetes, 

COPD, BMI>40) 

  X 

In-work status  X  

Standard Industrial Classification of 

economic activities (SIC) 

 X  

Household    

Type of dwelling inhabited X   

(e.g. semi-detached house) X   

Tenure (e.g. rented, mortgaged) X   

Household Composition (e.g. cohabiting 
couple) 

X   

Number of occupants X   

Number of rooms X   

Presence of central heating X   

Type of dwelling X   

Number of cars in household X   
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Table 3: Evaluation of propensity score matching: frequencies of a matching and non-
matching variables (National Statistics Socio-economic Classification (NS-SEC) and health 
status) in the enriched SPENSER dataset and from the Office of National Statistics and 
Health Survey for England 

 

PSM Matching Status Validation Devon Census Enriched Dataset 

Matched variable NS-SEC 1 34% 37% 

 NS-SEC 2 10% 11% 

 NS-SEC 3 12% 17% 

 NS-SEC 4 6% 8% 

 NS-SEC 5 21% 24% 

Non-matching Variable Very good health 46% 45% 

 Good health 35% 33% 

 Fair health 14% 11% 

 Bad health 4% 8% 

 Very bad health 1% 3% 
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Table 4: The number of infections (medians from 1000 simulations) in Devon county in 
each age-group between the baseline scenario and the experimental scenario under which 
lockdown started was a week earlier. 

 

Age Group Baseline Experimental Percentage 
Decrease 

0-18 4967 4076 18% 

19-30 2662 1045 61% 

31-65 8017 2190 73% 

66+ 1757 569 68% 

Total 17221 7880 54% 
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Table S1: Model parameters. 
 

Disease status Length of time (days) Source 

Exposed Period 2.56 _ 0.72 (SD) Peirlinck et al. (2020) 

Pre-symptomatic 
(infectious) 

Contagious 1-3 days before symptom 
onset 

Wei et al. (2020) 

Pre-symptomatic 
(infectious) 

2.3 days (95% CI, 0.8–3.0 days) before 
symptom onset 

He et al. (2020) 

Symptomatic 17 days = The median number of days 
from symptoms onset until the 

successive negative detection of SARS-
CoV-2 RNA [IQR] 12–21 days 

Qi et al. (2020) 

 

Symptomatic 21 = Maximum number of days since 
symptom onset with detectable virus  

He et al. (2020) 

Asymptomatic Viral load lower for asymptomatic cases 
but duration of shedding similar 

Zhou et al. (2020) 

Asymptomatic mean 5.2 (CI 95% 4.1-7.0) Li et al. (2020) 

Incubation period 
(exposed + pre-
symptomatic)  

mean 6.4 (CI 95% 5.6-7.7) 

 

Backer et al. (2020) 

Incubation period 
(exposed + pre-
symptomatic)  

median 5 (CI 95% 4.0-5.8) 

 

Backer et al. (2020) 

Incubation period 
(exposed + pre-
symptomatic) 

mean 5 (CI 95% 4.0-5.8) Linton et al. (2020) 

 

Incubation period 
(exposed + pre-
symptomatic)  

mean 4.8 (CI 95% 2 - 11) Liu et al. (2020) 

Incubation period 
(exposed + pre-
symptomatic)  

median 5.1 (CI 95% 4.5 -5.8) 

 

Lauer et al. (2020) 

Incubation period 
(exposed + pre-
symptomatic)  

97.5% of those that get symptoms will 
do so within 11.5 days (CI, 8.2 to 15.6 

days) 

Lauer et al. (2020) 

 

Infectious (pre-
symptomatic + 
symptomatic or 
asymptomatic)  

17.82 ± 2.95 (SD) Peirlinck et al. (2020) 
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Highlights  

 

● A microsimulation framework for modelling disease transmission within communities. 

● Integration of data from multiple, diverse sources to estimate exposure and risk. 

● Computationally efficient implementation allows rapid assessment of scenarios. 

● Allows the effects of different non-pharmaceutical interventions to be assessed. 

● Results show substantial reduction in infections associated with earlier UK lockdown. 
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